If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50+2t-0.0625t^2=0
a = -0.0625; b = 2; c = +50;
Δ = b2-4ac
Δ = 22-4·(-0.0625)·50
Δ = 16.5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{16.5}}{2*-0.0625}=\frac{-2-\sqrt{16.5}}{-0.125} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{16.5}}{2*-0.0625}=\frac{-2+\sqrt{16.5}}{-0.125} $
| 10=x/0.25 | | 9x+5=-4x-1 | | 3q^2-4q-20=0 | | 5(w-1)=-5w-45 | | 3×(4-x)=15 | | 6h-7=2h | | 12/2a=-2 | | -4.2x-6.5=-14.06+2x | | 28x=14 | | 2-2t=-8 | | 8t+9=105 | | 8t=9=105 | | 47=2x2+4x | | 1=3n=-2 | | 4z+20=40+2z | | 3(b-2)+2b=24 | | 2-6s=-4 | | 2a÷3-3a÷4=1/2 | | (4x+16)^3=168 | | 1-8f=-95 | | f(×)=50+300 | | 3/4x+7=×× | | -×+2=2x-25 | | 12-4z=0 | | (3x+1)(x+3)=19x-2(x+2)^2 | | 5y+17=32 | | f(×)=50×+300 | | 7x+6=6x+4 | | x(x-30)=240 | | 5(w-3)=18 | | C(x)=4x | | 5y-3=6y-8 |